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Abstract

Matching two images while estimating their relative geometry is a key step in many
computer vision applications. For decades, a well-established pipeline, consisting of
SIFT, RANSAC, and 8-point algorithm, has been used for this task. Recently, many
new approaches were proposed and shown to outperform previous alternatives on stan-
dard benchmarks, including the learned features, correspondence pruning algorithms,
and robust estimators. However, whether it is beneficial to incorporate them into the
classic pipeline is less-investigated. To this end, we are interested in i) evaluating the
performance of these recent algorithms in the context of image matching and epipolar
geometry estimation, and ii) leveraging them to design more practical registration sys-
tems. The experiments are conducted in four large-scale datasets using strictly defined
evaluation metrics, and the promising results provide insight into which algorithms suit
which scenarios. According to this, we propose three high-quality matching systems and
a Coarse-to-Fine RANSAC estimator. They show remarkable performances and have
potentials to a large part of computer vision tasks. To facilitate future research, the full
evaluation pipeline and the proposed methods are made publicly available.

1 Introduction
Matching two images while recovering their geometric relation, e.g., epipolar geometry [17],
is one of the most basic tasks in computer vision and a crucial step in many applications such
as Structure-from-Motion (SfM) [1, 20, 32, 37, 38] and Visual SLAM [11, 15, 31]. In these

c© 2019. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Hartley and Zisserman} 2003

Citation
Citation
{Agarwal, Furukawa, Snavely, Simon, Curless, Seitz, and Szeliski} 2011

Citation
Citation
{Heinly, Schonberger, Dunn, and Frahm} 2015

Citation
Citation
{Radenovic, Sch{ö}nberger, Ji, Frahm, Chum, and Matas} 2016

Citation
Citation
{Sch{ö}nberger and Frahm} 2016

Citation
Citation
{Sch{ö}nberger, Radenovic, Chum, and Frahm} 2015

Citation
Citation
{Davison, Reid, Molton, and Stasse} 2007

Citation
Citation
{Forster, Pizzoli, and Scaramuzza} 2014

Citation
Citation
{Mur-Artal, Montiel, and Tardos} 2015



2 BIAN ET AL.: AN EVALUATION OF FEATURE MATCHERS

(a) Matching (%Inlier: 78.41) (b) Estimation (NSGD: 0.0046)

Figure 1: Outputs of the two-view matching and geometry estimation pipeline. (a) shows
matching results with yellow/red lines standing for inliers/outliers. (b) shows epipolar geom-
etry estimation results with red/blue lines standing for the ground-truth/estimated epipolar
lines. We use the proposed normalized symmetric geometric distance (NSGD) to measure
the estimation accuracy. The smaller, the better.

applications, the overall performance heavily depends on the quality of the initial two-view
registration. Consequently, a thorough performance evaluation for this module is of vital
importance to the computer vision community. However, to the best of our knowledge,
no previous work has done it. To this end, we are dedicated to an extensive experimental
evaluation of existing algorithms to establish a uniform evaluation protocol in this paper.

For decades, a classic pipeline has been used for this task, which relies on the SIFT [24]
features to establish initial correspondences across images, then prunes bad correspondences
by Lowe’s ratio test [24], and finally estimates the geometry using RANSAC [14] based
estimators. We are here interested in recovering the fundamental matrix (FM), which suits
more general scenes than other geometric models, e.g., the homography and essential matrix.
Fig. 1 shows an example output of this pipeline. Here, we mainly focus on the geometry
estimation quality.

Recently, many new approaches were proposed which showed potentials to this task,
including the learned features [25, 29, 30], robust estimators [6, 34], and, especially, corre-
spondence pruning algorithms [7, 26, 47] which revived comparatively little attention over
before. However, while these algorithms outperform earlier ones on standard benchmarks,
incorporating them into the classic pipeline may not necessarily translate into a performance
increase. For example, Balntas et al. [4] showed that descriptors which perform better than
others on the standard benchmark [8] do not show a better image matching quality. The
inconsistency was also shown and discussed in [7, 39, 47].

In this paper, we conduct a comprehensive evaluation of recently proposed algorithms
by incorporating them into the well-established image matching and epipolar geometry esti-
mation pipeline to investigate whether they can increase the overall performance. In detail,
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this paper makes the following contributions:

• i) We present an evaluation protocol for local features, robust estimators, and espe-
cially correspondence pruning algorithms such as [7, 26, 47] which have not been
carefully investigated.

• ii) We evaluate algorithms on four large-scale datasets using strictly defined metrics.
The results provide insights into which datasets are particularly challenging and which
algorithms suit which scenarios.

• iii) Based on the results, we propose three high-quality and efficient matching systems,
which perform on par with the powerful CODE [23] system but are several orders of
magnitude faster.

• iv) Interestingly, we observe that the recent GC-RANSAC [6] (also USAC [34]) does
not show consistently high performance on geometry estimation but permits effective
outlier pruning. We hence propose to first use it for outlier removal, and then apply
LMedS based estimator [36] for model fitting. The resulting approach, termed Coarse-
to-Fine RANSAC, shows significant superiority over other alternatives.

2 Related work

Rich research focuses on evaluating local features and robust estimators, while corre-
spondence pruning algorithms have not been well evaluated. The proposed benchmark miti-
gates this gap.

Evaluating Local Features. Mikolajczyk et al. [28] evaluated the affine region detectors
on small-scale datasets, which cover various photometric and geometric image transforma-
tions. Later, Mikolajczyk and Schmid [27] extended the evaluation to local descriptors.
Build upon this, Heinly et al.[19] proposed several additional metrics and datasets to evaluate
binary descriptors. Besides, Brown et al. [8] presented a patch pair classification benchmark
for the learned descriptors, which measures the ability of a descriptor to discriminate positive
from negative patch pairs. Recently, Balntas et al.[5] evaluated the hand-crafted and learned
descriptors in terms of the verifying and retrieving homography patches. Schönberger et
al.[39] comparatively evaluated these two types of descriptors in the context of image-based
reconstruction.

Evaluating Robust Estimators. Choi et al.[10] conducted an evaluation of RANSAC [14]
family in terms of the line fitting and homography estimation [17], where the accuracy,
runtime, and robustness of methods are analyzed. Lacey et al.[22] performed an evalua-
tion of RANSAC algorithms for stereo camera calibration. Raguram et al.[33] categorized
RANSAC algorithms and provide a comparative analysis on them, where the trade-off be-
tween efficiency and accuracy is considered. These protocols evaluate robust model fitting
techniques in both synthetic and real data. Torr et al. [42, 44] provided performance char-
acterization of fundamental matrix (FM) estimation algorithms. Zhang [48] reviewed FM
estimation techniques and proposed a well-founded measure to compute the distance of two
fundamental matrices, which is shown to better than using the Frobenius norm. Armanguè et
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Algorithm 1 Compute SGD

Input: I1, I2,F1,F2,N
Output: sgd

1: function COMPUTESGD(I1, I2,F1,F2,N)
2: sgd← 0
3: count← 0
4: while count < N do
5: randomly choose a point m in I1
6: draw l1 = F1m in I2
7: if l1 does not intersect with I2 then
8: continue
9: end if

10: randomly choose a point m′ on L1

11: draw l2 = F2m in I2
12: d′1 = distance(m′, l2)
13: draw l3 = FT

2 m′ in I1
14: d1 = distance(m, l3)
15: sgd← sgd +d′1 +d1
16: count← count +1
17: end while
18: swap (I1, I2), swap (F1,F2)
19: repeat step 3−17
20: sgd← sgd/(4∗N)
21: return sgd
22: end function

al. [3] provided an overview on different FM estimation approaches. Fathy et al. [13] studied
the error criteria in FM estimation phase.

Proposed Benchmark. Our benchmark is mainly motivated by [39] which evaluates de-
scriptors in higher-level tasks. The difference is that we evaluate three types of algorithms
in the context of two-view image matching and geometry estimation for the overall per-
formance, while [39] evaluates descriptors in multiple tasks for the generalized descriptor.
Besides, we draw from [6, 35, 39, 42, 48] to design the evaluation metric and construct the
benchmark dataset. Moreover, the presented evaluation could also be interpreted as an ab-
lation study for image matching and geometry estimation pipeline. It can help researchers
design more practical correspondence systems.

3 Evaluation metrics

3.1 Metrics on FM estimation
Fundamental matrices cannot be compared directly due to their structures. For measuring
the accuracy of estimation, we follow Zhang’s method [48], referred as symmetric geometry
distance (SGD) in this paper. It generates virtual correspondences using the ground-truth
FM and computes the epipolar distance to the estimated one, and then reverts their roles to
compute the distance again to ensure symmetry. The averaged distance is used for accuracy
measurement. Alg. 1 presents an overview for the computation of the SGD error, where (I1,
I2) is an image pair, F1 and F2 are two FMs, and N is the number of maximum iterations.

Normalized SGD. The computed SGD error (in pixels) causes comparability issues be-
tween images with different resolutions. In order to address this issue, we propose to nor-
malize the distance into the range of [0,1] by dividing the distance by the length of the image
diagonal. Formally, the distance is regularized by multiplying a factor f = 1/

√
h2 +w2,

where h and w stand for the height and width of the image, respectively. This makes the
error comparable across different resolution images.
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%Recall. Given the FM estimates, we classify them as accurate or not by thresholding the
Normalized SGD error, and use the %Recall, the ratio of accurate estimates to all estimates,
for evaluation. In our experiments, 0.05 is used as the threshold. As the recall increasing with
thresholds in an accumulative way, the performance is not sensitive to threshold selection.
However, we also suggest readers showing recall curves with varying thresholds.

3.2 Metrics on Image Matching

%Inlier. We use the inlier rate, i.e., the ratio of inliers to all matches, to evaluate the corre-
spondence quality. Here, matches whose distance to the ground-truth epipolar line is smaller
than certain threshold in both images are regarded as inliers. To avoid the comparability
issue caused by different image resolutions, we set the threshold as α

√
h2 +w2, where h and

w are height and width of images, respectively. α is 0.003 in our evaluation. Besides, for
analyzing intermediate results, we also report %Inlier-m, i.e., the inlier rate before outlier
rejection by robust estimators such as RANSAC [14]. This reflects the performance of a pure
feature matching system.

#Corrs. We use correspondence numbers for analyzing results rather than performance
comparison, since the impact of match numbers to high-level applications such as SfM [37]
are arguable [39]. However, too few correspondences would degenerate these applications.
Therefore, we pay little attention to match numbers, as long as they are not too small. Simi-
larly, #Corrs-m, match numbers before the estimation phase, is also reported.

4 Datasets

We use four large-scale benchmark datasets for evaluation, where different real-world
scenes are captured, and camera configurations vary from one to another. Such diversities
allow us to compare algorithms in different scenarios.

Datasets. The benchmark datasets include: (1) The TUM SLAM dataset [40], which pro-
vides videos of indoor scenes, where the texture is often weak and images are sometimes
blurred due to the fast camera movement. (2) The KITTI odometry dataset [16], which con-
sists of consecutive frames in a driving scenario, where the geometry between images is
dominated by the forward motion. (3) The Tanks and Temples (T&T) dataset [21], which
provides many scans of scenes or objects for image-based reconstruction, and hence offers
wide-baseline pairs for evaluation. (4) The Community Photo Collection (CPC) dataset [46],
which provides unstructured images of well-known landmarks across the world collected
from Flickr. In the CPC dataset, images are taken from arbitrary cameras at a different time.
Fig. 2 provides sample images of these benchmark datasets.

Ground Truth. The fundamental matrix between an image pair could be derived alge-
braically from their projection matrices (P and P′) as follows:

F = [P′C]×P′P+ (1)
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Figure 2: Sample images from the benchmark datasets.

Table 1: Details of the benchmark datasets.
Datasets #Seq #Image Resolution Baseline Property
TUM 3 5994 480×640 short indoor scenes
KITTI 5 9065 370×1226 short street views

T&T 3 922 1080×2048 wide outdoor scenes1080×1920
CPC 1 1615 varying wide internet photos

where P+ is the pseudo-inverse of P, i.e., PP+ = I, and C is a null vector, namely the camera
center, defined by PC = 0. P = K[R|t] is a 3x4 matrix, and it satisfies

d

u
v
1

= P


x
y
z
1

 (2)

where d is an unknown depth, [u, v] is the image coordinates, and [x, y, z] is the real-world
coordinates. K is the camera intrinsics, and [R|t] is the camera extrinsics. The ground-truth
camera intrinsic and extrinsic parameters are provided in TUM and KITTI datasets, while
they are unknown in T&T and CPC datasets. Therefore, we derive ground-truth camera
parameters for them by reconstructing image sequences using the COLMAP [37], as in [35,
47]. Note that SfM pipeline reasons globally about the consistency of 3D points and cameras,
leading to accurate estimates with an average reprojection error below one pixel [37].

Image Pairs Construction. We search for matchable image pairs by identifying inlier
numbers, i.e., we generate correspondences across two images using SIFT [24] and choose
pairs which contain more than 20 inliers, as in [35]. For wide-baseline datasets (T&T [21]
and CPC [46]), all image pairs are searched. For short-baseline datasets (TUM [40] and
KITTI [16]), a frame is paired to the subsequent frames captured within one second because
almost other pairs are of no overlap. In this way, we obtain a large number of matchable
image pairs, and we randomly choose 1000 pairs in each dataset for testing. The testing split
on each dataset is described as follows. In the TUM [40] dataset, we test methods on three
sequences: fr3/teddy, fr3/large_cabinet, and fr3/long_office_household. In the KITTI [16]
Odometry dataset, sequences 06-10 are used. In the T&T [21] dataset, sequences Panther,
Playground, and Train are used. In the CPC [46] dataset, Roman Forum is used. Other
image sequences could be used as training data for further deep learning based methods.
Tab. 1 summarizes the test set that we use for evaluation.
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5 Experiments

Related research is quite rich, so we mainly focus on evaluating recently proposed al-
gorithms and the widely used methods in this paper. In the following, we introduce the
experimental configuration, discuss results, and propose our methods.

5.1 Experimental Setup
Baseline and Comparability. We set a classic pipeline as the baseline. Specifically, we
use DoG [24] detector and SIFT [24] descriptor to generate initial correspondences across
images by the plain nearest-neighbor search, then prune bad correspondences using Lowe’s
ratio test [24], and finally compute FM estimates and remove outliers using RANSAC [14]
with the 8-point algorithm [18]. For each evaluated algorithm, we incorporate it into the
baseline system by replacing its counterpart, and use the overall performance for comparison.

Evaluated Methods. Firstly, we evaluate four deep learning based local features, includ-
ing HesAffNet [30] detector and two descriptors (L2Net [41], HardNet++ [29]). Besides,
two hand-crafted descriptors (DSP-SIFT [12] and RootSIFT-PCA [2, 9]) are also evaluated,
which show high performance in the recent benchmark [39]. Secondly, we evaluate four cor-
respondence pruning algorithms: CODE [23], GMS [7], LPM [26], and LC [47]. Finally, we
evaluate two widely used estimators (LMedS [36] and MSAC [43]) and two state-of-the-art
alternatives (USAC [34] and GC-RANSAC [6]). Details about these methods can be found
in the supplementary.

Implementations. We use VLFeat [45] library for the implementation of SIFT descriptor
and DoG detector, and the threshold is 0.8 for ratio test [24]. Matlab functions are used
for RANSAC, LMedS, and MSAC implementations, where we limit the maximum iteration
as 2000 for a reasonable speed. Other codes are from authors’ publicly available imple-
mentation, where we use the pre-trained models released by authors for deep learning based
methods.

5.2 Results and Discussion
Tab. 2 reports the experimental results for all methods and datasets. In each block, the first
line shows the baseline performance. First, second, third best results are highlighted in color,
and the results that are better than the baseline are highlighted in bold. Here, we mainly com-
pare algorithms in terms of %Recall, which reflects the overall performance. In addition,
%Inlier shows matching performance, and %Inlier-m shows matching before outlier rejec-
tion phase. #Corrs(-m) is used to analyze results instead of performance comparison. The
detail about these metrics can be seen in Sec. 3. For performance analyses, we mainly tar-
get on concluding the distinctive properties of the best methods instead of a comprehensive
comparison of all approaches.

Local Features. Tab. 2(a) shows the results of local features. The %Recall implies that a)
RootSIFT-PCA [9] and HardNet++ [29] consistently outperform the baseline, and the latter
is better than the former. b) HesAffNet [30] performs best in wide-baseline scenarios (T&T
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Table 2: Experimental results. First, second, third best results are highlighted in color, and
the results that are better than the baseline (the first line in each block) performance are
highlighted in bold. %Recall represents the overall performance.

Datasets
(a) Local Features (b) Pruning Methods (c) Robust Estimators

Methods %Recall %Inlier %Inlier-m #Corrs (-m) Methods %Recall %Inlier %Inlier-m #Corrs (-m) Methods %Recall %Inlier %Inlier-m #Corrs (-m)

TUM

SIFT 57.40 75.33 59.21 65 (316) RATIO 57.40 75.33 59.21 65 (316) RANSAC 57.40 75.33 59.21 65 (316)

DSP-SIFT 53.90 74.89 56.44 66 (380) GMS 59.20 76.18 69.72 64 (241) LMedS 69.20 75.24 59.21 158 (316)

RootSIFT-PCA 58.90 75.65 62.22 67 (306) LPM 58.90 75.75 64.42 67 (290) MSAC 52.70 75.12 59.21 63 (316)

L2Net 58.10 75.49 59.26 66 (319) LC 54.10 75.96 71.32 57 (203) USAC 56.50 72.13 59.21 244 (316)

HardNet++ 58.90 75.74 62.07 67 (315) CODE 62.50 76.95 66.82 3119 (18562) GC-RSC 30.80 68.13 59.21 272 (316)

HesAffNet 51.70 75.70 62.06 101 (657)

KITTI

SIFT 91.70 98.20 87.40 154 (525) RATIO 91.70 98.20 87.40 154 (525) RANSAC 91.70 98.20 87.40 154 (525)

DSP-SIFT 92.00 98.22 87.60 153 (572) GMS 91.70 98.58 95.56 148 (445) LMedS 91.80 98.25 87.40 263 (525)

RootSIFT-PCA 92.00 98.23 90.76 156 (514) LPM 91.50 98.27 92.50 157 (501) MSAC 91.80 98.12 87.40 153 (525)

L2Net 91.60 98.21 89.40 156 (520) LC 89.70 99.44 97.49 96 (267) USAC 82.70 97.39 87.40 455 (525)

HardNet++ 92.00 98.21 91.25 159 (535) CODE 92.50 98.32 93.03 4834 (19246) GC-RSC 56.50 95.00 87.40 487 (525)

HesAffNet 90.40 98.09 90.64 233 (1182)

T&T

SIFT 70.00 75.20 53.25 85 (795) RATIO 70.00 75.20 53.25 85 (795) RANSAC 70.00 75.20 53.25 85 (795)

DSP-SIFT 75.10 80.20 60.02 90 (845) GMS 80.90 84.38 77.65 90 (598) LMedS 83.40 77.26 53.25 398 (795)

RootSIFT-PCA 77.40 80.55 61.75 89 (738) LPM 80.70 81.62 66.98 90 (667) MSAC 64.60 73.27 53.43 84 (799)

L2Net 70.40 73.76 57.31 93 (799) LC 76.60 84.01 72.24 77 (512) USAC 78.80 80.98 53.25 495 (795)

HardNet++ 79.90 81.05 63.61 96 (814) CODE 89.40 89.14 76.98 782 (9251) GC-RSC 80.40 78.97 53.25 612 (795)

HesAffNet 82.50 84.71 70.29 97 (920)

CPC

SIFT 29.20 67.14 48.07 60 (415) RATIO 29.20 67.14 48.07 60 (415) RANSAC 29.20 67.14 48.07 60 (415)

DSP-SIFT 35.20 76.48 56.29 57 (367) GMS 43.00 85.90 82.37 59 (249) LMedS 44.00 75.38 48.07 209 (415)

RootSIFT-PCA 38.20 78.45 59.92 62 (361) LPM 39.40 78.17 65.98 60 (310) MSAC 23.00 62.28 48.07 59 (415)

L2Net 29.60 60.22 50.70 93 (433) LC 39.40 83.99 72.22 51 (295) USAC 49.70 80.38 48.07 232 (415)

HardNet++ 40.30 76.73 62.30 69 (400) CODE 51.00 90.16 78.55 696 (5774) GC-RSC 53.70 81.15 48.07 269 (415)

HesAffNet 47.40 84.58 72.22 65 (405)

and CPC), although it is degenerate on the TUM dataset. c) DSP-SIFT [12] outperforms the
baseline on almost all datasets but TUM, and L2Net [41] shows similar performances with
the baseline on all datasets.

Correspondence Pruning Methods. Tab. 2(b) shows the results of pruning methods. It
shows that a) CODE [23] achieves the state-of-the-art performance on all datasets. b)
GMS [7] and LPM [26] consistently outperform the baseline methods by pruning bad corre-
spondences effectively, i.e., improving the %Inlier-m and preserving a considerable #Corrs-
m in the meanwhile. Here, GMS is better than LPM. c) LC [47] can boost the matching
accuracy (%Inlier-m) but, for estimation (%Recall), it is degenerate on the short-baseline
datasets (TUM and KITTI). Perhaps this is because the provided model is trained on wide-
baseline datasets. Also, note that it requires camera intrinsics, which are normally assumed
to be unknown for the FM estimation problem.

Robust Estimators. Tab. 2(c) shows the results of robust estimators. They show: a)
LMedS [36] performs best on the first three datasets where images are not as difficult as
CPC dataset. This confirms the suggestion by Matlab documentation that LMedS works well
when the inlier rate is high enough, e.g., above 50%. b) GC-RANSAC [6] and USAC [34]
show high performances in wide-baseline scenarios, especially on the challenging CPC
dataset. However, they are degenerate in short-baseline scenarios (TUM and KITTI). c) In-
terestingly, we observe that GC-RANSAC (also USAC) can preserve rich correspondences
(%Corrs-m) and prune outliers (%Inlier(-m)) effectively.

Runtime. As algorithms rely on different operating systems, we use two machines for
evaluation: a Linux server L (Intel E5-2620 CPU, NVIDIA Titan Xp GPU) and a Windows
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Table 3: Time consumption of evaluated algorithms.
Device Runtime (seconds)

L
SIFT DSP-SIFT RootSIFT-PCA L2Net HardNet++ HesAffNet
0.702 1.762 0.705 2.260 0.002 0.367

W

LPM GMS LC CODE
0.003 0.001 0.021 4.068

RANSAC LMedS MSAC USAC GC-RSC
0.521 0.528 0.537 0.565 0.788

laptop W ( Intel i7-3630QM CPU, NVIDIA GeForce GT 650M GPU), where 100 images
from the KITTI dataset are used for testing and the averaged results are reported. Tab. 3 re-
ports the time consumption of algorithms. Descriptors rely on DoG [24] detector, which (L)
takes 238ms to extract 1760 keypoints, and HesAffNet [30] detector extracts 4860 keypoints.
CODE [23] (W) takes 2.953s to extract 58,675 keypoints using GPU, and takes 4.068s to
prune bad correspondences using CPU.

5.3 Proposed Methods

Drawing inspiration from the results, we propose three practical matching systems and a
robust estimator as follows.

Matching Systems. We first adopt one of the following three pairs of detectors and de-
scriptors for generating putative correspondences:

1. DoG [24] + RootSIFT-PCA [9]

2. DoG + (HardNet++) [29]

3. HesAffNet [30] + (HardNet++)

where we recommend 1, 2 for general scenes and 3 for wide-baseline scenarios. Then, we
apply ratio test (the threshold is 0.8) and GMS [7] to prune bad correspondences. Finally, we
use LMedS [36] based estimator for model fitting. Tab. 4 shows the evaluation results, which
clearly demonstrate that the recommended systems outperform the baseline, and achieve
competitive performances with the state-of-the-art system (CODE [23] + LMedS [36]). Note
that CODE is several orders of magnitude slower, even GPU is adopted.

Coarse-to-Fine RANSAC. Tab. 2 shows that GC-RANSAC [6] and USAC [34] prune out-
liers effectively, although they fail to show consistently high performance on model fitting.
To this end, we propose to use GC-RANSAC [6] for pruning bad matches, and then apply
LMedS [36] based estimator for model fitting. Note that USAC is also applicable. In this
two-stage framework, the former is used to roughly find the inlier set and the latter to fit
the model accurately, so we term the resultant approach Coarse-to-Fine RANSAC (CF-RSC
in short). Tab. 5 shows the results of the proposed method in terms of %Recall, where all
estimators use the same input, i.e., SIFT [24] matches with ratio test pruning. It shows that
the proposed CF-RSC significantly outperforms other alternatives.
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Table 4: Evaluation results of the proposed matching systems.
Datasets Methods %Recall %Inlier %Inlier-m #Corrs(-m)

TUM

Baseline 57.40 75.33 59.21 65 (316)
CODE 67.50 76.04 66.82 9281 (18562)
RootSIFT-PCA + GMS 67.50 76.13 69.62 124 (248)
HardNet + GMS 68.60 75.85 69.39 128 (256)
HesAffNet + GMS 66.40 75.92 67.04 288 (577)

KITTI

Baseline 91.70 98.20 87.40 154 (525)
CODE 91.90 98.22 93.03 9623 (19246)
RootSIFT-PCA + GMS 92.50 98.54 95.73 225 (450)
HardNet + GMS 92.10 98.49 95.43 236 (472)
HesAffNet + GMS 91.80 98.48 94.18 540 (1079)

T&T

Baseline 70.00 75.20 53.25 85 (795)
CODE 92.70 87.81 76.98 4626 (9251)
RootSIFT-PCA + GMS 89.30 85.29 78.69 307 (614)
HardNet + GMS 92.20 85.52 78.86 343 (686)
HesAffNet + GMS 90.90 86.16 79.25 412 (824)

CPC

Baseline 29.20 67.14 48.07 60 (415)
CODE 61.80 89.45 78.55 2890 (5774)
RootSIFT-PCA + GMS 57.30 88.94 83.70 133 (263)
HardNet + GMS 60.10 88.34 83.12 149 (298)
HesAffNet + GMS 60.80 88.72 83.16 182 (362)

Table 5: %Recall of the proposed CF-RSC.
Datasets RANSAC LMedS MSAC USAC GC-RSC CF-RSC
TUM 57.40 69.20 52.70 56.50 30.80 69.30
KITTI 91.70 91.80 91.80 82.70 56.50 92.30
T&T 70.00 83.40 64.60 78.80 80.40 90.70
CPC 29.20 44.00 23.00 49.70 53.70 60.90

6 Conclusions

This paper evaluates the recently proposed local features, correspondence pruning algo-
rithms, and robust estimators using strictly defined metrics in the context of image matching
and fundamental matrix estimation. Comprehensive evaluation results on four large-scale
datasets provide insights into which datasets are particularly challenging and which algo-
rithms perform well in which scenarios. This can advance the development of related re-
search fields, and it can also help researchers design practical matching systems in different
applications. Finally, drawing inspiration from the results, we propose three high-quality
image matching systems and a robust estimator, Coarse-to-Fine RANSAC. They achieve
remarkable performances and have potentials in a wide range of computer vision tasks.
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